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asynchronous execution time is shown to be only (D+l) times the
synchronous execution time, where D is the delay bound. Finally ,
a wide class of recognition problems is identified which can be solved
by linear asynchronous structures.
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1. Introduction

Computational systems , whether  they be hardware or software , are

usually envisioned as an interconnection of a number of separate and distinct

processes. Each of the processes is assumed to perform a par t icu la r  task ,

obtaining inputs from other processes in the system and providing re’;ults

to other processes in the system . The function of the whole system is

accomplished th roug h the combined effort of the distinct processes acting

in concert. A specification of the overall control of when processes

are to act and communicate with each other is usually required to insure

proper operation of the system . In programs this is usually done by specifying

th e “flow of controV’ of the  program , whereas in hardware this is usually

clone by having a centralized control unit which emits control signals

to th e processes. As is well known, efticiencies can often be realized

by hav ing  several processes act simultaneously , or in parallel , rather

than  having a single sequence of process actions. Such parallel computation ,

however , is often quite complex to control , especially when the time of

process performance is variable.

In this paper we study the intercommunication problems for systems

of in te rconnected processes , act ing in pa ral lel , where the tim e required

f o r  a process to act is not known exactl y .  As a simplif y ing assumption

we rest r i c t  our a t ten t ion  here to linear interconnection of processes.

The results we obtain are then d i rec t ly  applicable to such “linear structures .”

Also this provides some information about systems having more complex

Interconnection since in any such system there are linear chains of inter-

connected processes . The l inear i ty  assumption allows us to draw on , and

•
~~ •.~
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compare our results with , the extensive work done on synchronous line ir

• structures . For example , the “Firing Squad Synchronization Problem ” [7 ]

is one of the earliest questions studied in this context. Since ~hat time,

a large quantity of literature has appeared on cellular machines , iterat ive

• a r r ays , parallel granunars , L—systems , etc. [2,4,9,10]. All of these ~tudies

• assume synchronous computat ion . That is , at each d i sc re t e  moment in time ,

• 

• 
if a machine can pe r fo rm some t r a n s i t i o n  (or , in the gramma t ical case , if a

production applies) then that transition must be performed. The cons~ quences

of relaxing the synchronous requIrement to asynchronous operation are :

first , that some tasks which can be done synchronousl y canno t even be

approximated asynchronously ,  and second , for those synchronous comput.ttions

t h a t  can be realized asynchronously, the p rev ious ly  used techni ques f til to

app ly and a new se t of techni ques must be developed . The asynchronous

assumpt ion is a useful one to make since often processes have executi)n

F times which depend upon the data. We do a’~sume t h a t  t h e  t imes are kn wn to

w iii in some upper and lower bounds , althoug h they ri•iv vary w i t h  t i ~e

w it Ii a these bounds. Examp les where such situations arise include boi:h

i I i  tar arrays of devices , where each device runs at sor:e nonzero ra e ,

and operating systems , where each proce ss is giv en a nonzer o , hut somewhat

variable , amount of tine to act.

)ur model , to be formall y defined in the next sect ~~~1fl~~ h v p o t hesi .  es a

~.v ~ tem of n identically structured finite state machines organized .~s a

• l inear array. Each machine is allowed to conununicate with other machines

In i t s  own neighborhood (not necessarily just with its adjacent neighi ors).

• The t Ime is measured in a relative fashion , with one step elapsing wh never

F’ $
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some machine(s) change state.  A g iven ma chine is said to become ac t ive

when It is first capable of a transition . (Identity transitions are not

allowed , so a device may no t be capable of another state change immedia tely

• 
. after a transition has taken place.) Once active , the machine can perform

the state change at any step. However , no machine can remain active , with-

out changing state , for more than D steps. The delay , 0, is a nonnegative

integral value which gives the number of steps any processor is allowed to

remain idle prior to completing a computational step. Hence , when D = 0 ,

no idle steps are allowed , eac h proces sor comp letes execution at each step

and , therefore , the system is synchronous. When D 0, the system is

asynchronous and the processors operate at a worst case rate of once every

• 0 + 1 steps.

Clearly , because the rate of execution is a parameter , the model to be

described will be equally capable of characterizing synchronous , as well as

asynchronous , computation . Indeed , by vary ing D , a single system can be

executed using either policy . This facilitates our study of the relationships

between synchronous and asynchronous parallel computation .

I
s Sever al comments are in order. First , note that no assumption i~ made

as to whether or not the relative time steps are of equal length. Further—

more , no assump tion is made abou t how long it takes f or a g iven dev ic~ to

- • change state , except that it is bounded . Consequently , we are allowing the

execution t ime of a given dev ice to change for any reason whatsoever. The

same transition can even take a different number of steps for different

dev ices or for the same device at different points in the computation . All

th at is required is that It be bounded by D + 1• (0 is f ixed  for  any given

L

—~~ ~~~~~~~—•~~~~~~~ —•~~~~ •—-•• ~~~ .• p ~~~~~~~~~~~~~~~~~~~~~~~ -~~ • ~~~~~~~~•~~~-•~~ ~~—-•~~ •• ~~~~~~ -
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• computat ion). This point of view is motivated by an interest in modelling

parallel circuits as well as operat ing systems . In the former case , t:he

per formance of the device may be influenced by ph ysical character ist ics of

the components. In the latter case , a process may be influenced by competi-

tion w ith o ther processes for  resources , or influenced by I/O or some

other exogenous variables . In any case , If the delay D cannot be chosen

pre c isely for  a g iven sys tem , then it may be considered to be a limit beyond

wh ich the failure of a processor to execute is interpreted as a failure of

t h e  entire system .

A second observation is that the assuziption of “identically structured ”

pro cesses is no t overl y restrictive . The assumption should probably be

stated as “iden tically structured with respect to the interaction among

processes.” Hence , the in terac t ion of mul tiple instances of processt s

• w h i c h  communicate in the same manner Is being studied. An*, computation not

relevant to this communication is allowed ; since it doesn ’t influence the

• overall synchronization behavior , however , It can be ignored .

Fi nall y ,  a word of warning is in order about the role of D. D, as

it is used in the sequel , is the delay , or the number of idle steps allowed

• befor e a device must execute. Consequently , the “firing f r eq uency” ior

p rocessors which are always active will , in the worst case, be once e very

1 + I steps. Thus , for the synchronous case , D = 0, the devices m~st f i r e

at each step and , therefore , no idle steps are allowed for active precessors.

The main question addressed in this paper is:

Flow do linear arrays of machines operating synchronously compare

with linear arrays of machines operating asynchronously In terms

of computat ional and synchroniza t ion  cha rac te r i s t i c s?



_______________________ - •

)
First of all we note that observed globally, a synchronous array has precisely

one execut ion sequence (assuming,  a~ we do , tha t  the machines are determin—

i s t i c ) .  By con tras t , an asynchronous array defines a set of computations

corresponding to the differing execution rates of the individual machines.

Obviously ,  one of these computations is a “synchronous” compu tation in the

• sense that each machine executes without any delay). Thus, if we consider

an asynchronous computation to be well behaved if the computed result is

independent of the individual execution rates , then clearly, anything that

can be computed asynchronously can be computed synchronously. Our main

question thus reduces to: are asynchronous arrays weaker than synchronous

array s? The answer depends upon whether we speak of synchronization ability

or computational ability.

it is known that cellular arrays can solve a synchronization problem

known as the “fir ing squad synchronization problem ,” [7]. It would be fool-

ish to expect an asynchronous linear array to solve this problem (for D > 0)

since the soldiers may or may not choose to “f i r e ” at the appointed moment.

• But suppose that we required all soldiers to “fire” within an interval of

size D. It will be shown that this simpler problem cannot be solved !

indeed , a stronger result will be shown . Hence , with respect to synchroniz—

lug qualities , the asynchronous linear arrays are weaker than their synchro—

nous counterparts.

By cont rast , it will be shown that for language recognition prob lems,

asynchronou s arrays are no weaker than the synchronous linear arrays. This

is unexpected since in the synchronous arrays the techniques used to solve

t h e  firing squad problem are central to the solution of recognition problems.

—~ -~~~~~~ —— _______rn - —— a
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In [10] the recognition questions were analyzed in terms of the time required

by the linear array . Hence , it is no t only of interest whether a particular

set can be recognized , but the time required in comparison to the synchronous

case is also relevant. We show that it takes at most 3(0+1) times longer .

This last result uses another of our main theorems . Namely , we iden ti fy

three properties of linear asynchronous systems — —  determinacy, persistence ,

and single change —— and show that these are sufficient to guarantee that

any system with these p roperties operates asynchronously at most (0+1) time s

slower than it does syn chronously,  for  all D. With this  resul t we obtain

an e f f ec t ive  st rategy fo r solving a problem wi th  asynchronous systems :

Fi rst f i nd  a synchronous system for  the task.  Establ ish determinacy ,

persistence , and sing le change , and then invoke the above theorem . The

v a l i d i t y  and pe rformance are thus established.

The format of the remainder of the paper is as follows. Section 2

gives initial definitions and illustrative examples. Section 3 shows the

impossibility of a linear asynchronous system solving the firing squad

• *synchronization problem . Section 4 proves the CR Theorem on the synchron—

ous to asynchronous rela tionship. Section 5 establishes the equivalence

• between synchronous and asynchronous recognition , and Section 6 poses some

• open problems .

* The name is motivated b y the fact  that this theorem has a flavor similar
to the Chu rch— Rosser Theorem of Lambda Calculus . [1 , 3] .

4 ’
_••~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~ • _ _ _ _ _ _



_____________ _________ ii ~~~• ~~~~~~~~~~~~~~~~~~~~~~
_
~‘ ‘  •— •. ‘ -

~~~~~

7

2. Basic Definitions and Examples

In this section we introduce the basic model , present examples and

provide further motivation .

Although we have purposely chosen a model tha t is closely related

to the iterative arrays and cellular automata models so as to provide conve-

nient comparison , we have not used the finite state machine as a basic con-

stituent of the model. Instead , we avoid the cumbersome details of these

machines by basing the model on a rewriting system that we call an asynchro-

nous grammar . Even so, we will continue to employ the machine metaphor in

our informal discussions; first because it is a handy conceptual tool , and

second because we believe the work includes application to asynchronous

systems that are actually imp lemented as circuits.

Definition 2.1. An asynchronous grammar C = <E , F> consists of a finite

alphabe t ~ and a f in i te se t P of pr oduc t ions of the fo r m a —‘- ~~ where

*Ci) a , ~

(ii) 
~~~ 

= ~~~~ 
•

• ( i i i )  ~ ~ ~~~.

Hence , an asynchronous grammar is a rewriting system with length pre—

serving, non—identity productions over the alphabet. The state of a linear

ar r ay  of n machines is thus represented by a word x
1
x
2 ~x ~ E~ . 

•
~
‘
~~

• at denotes the length of string •~ 
•

I Subscripts are used to denote coord inate positions.

ii
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A rule a —
~~ ~ models changes in th e state of machines in terms of

t h e i r  own states and the states of nei ghbor ing machines. The a 8

constraint is intuitively natural since in an asynchronous system the only

detectab le action is a change in a state. Remaining in a state is cons idered

as no action .

• Given a string x
1~~ ~

x , suppose there is a production a —
~ 8

such that

• a = x . x ~~~~~~~~~~~

~ 
1+1

Then a 8 can be app lied to x 1” x , and if 8 = 
~~ ~y. we

obtain the string x
1~~ ~~~~~ 

y
~ ~~+]~~ 

~~ ~~~~~~~ ~ X .  Th us , successive

modifications to some initial string in will represen t the successive

state changes in the linear asynchronous structure.

A particularly simp le case is tha t for  an ordinary array of n

mach ines where any machine ’s nex t sta te depends only upon its current state

• Jfld the current states of its two neighbors . This situation is represented

by a grammar in which al = 3. The middle symbol representing the machine

tinde r consideration and the two end symbols represent the neighbors . Thus a

production a 3 would take the form : a
1
a
2
a
3 

—
~ b

1
b
2
b3, where a

1 
= b1,

a.3 = h
3 

and a
2 ~ 

b~ indicat ing t h e desired change .

A pr ecise descr ipt ion of how changes can occur due to production

• • app lication is:

• Def inition 2.2. Let x = X
1~~~

. 
~X € and y = y

1~ 
•y €

We write x I— y provided x 
~ 

y and x~ ~ y1 
imp lies there exists a

production a
1’~ 

.a
k 8

1 8k 
P such tha t

• 

• •
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(i) 
~

j ,  1 
~ 

j ~ n such that x
i~~+l

.x
i
.
~~

x
i~~+k

• ~~a~~~”a .~~”a , and
1 j  k

(ii) 
~~~~~~~~~~~~~ 

= whenever a 8 for s = 1,2 , ” ,k.

Informally, x1~ ”x ~ ~i~~
’
~~ n 

if wherever a change takes place (x1 ~

• then there is some product ion matching some context around x~ (requirement

• ( i ) )  and tha t  each change imp lied by the product ion (a ~ 8~~) is ref lec ted

in the resu l t  (8~ = This def in i t ion  is qui te  general , allowing

ov er lapp ing applica tion of productions.

Examp le 2.1. Let C = <{l ,2,3} , (12 13, 23 21, 12 33}> .

Then the following are allowed :

123 h— 133
l23~~— 12l
123~— 333
123 E— 33l

Note that consistent overlapp ing is allowed and that in the last two cases,

it is ambiguous whe ther 12 —
~ 13 is applied , since it is subsumed by

12 —
~~ 33.

Exam ple 2.2: Let C = ~{l ,2 } , (12 2l}> then

112122 ~~ 121122
112122 p— 112212
112122 i— 121212

Note that this grammar is non—overlapping . We shall have more to say

about this grammar later .

Def inition 2.3. Given C = <E , P> and X
1

~~~~ •X  E E n coordina te i is

active in x • •x  provided there  exis ts  a y • •y c E~ such tha t

x
1

X~~~~ and xj 

1 n
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Notation:  Superscr~pts will be used to denote elements of a sequence.

* *The ref lexive , transitive closure of p— is denoted i— . Hence x F— y

• if and only if there exis t x°, ~~~~~~~~~~~~~~~~~~~~ (q 2 0) such that

x = x° p— x1 s— x2 i— ~~~~~~~ ~~ y. We write x F— y to denote a single

appl ica t ion of prod uct ion p to str ing  x , while x F-j- y means that

exactly one pr oduct ion has been app lied .

We ar e now read y to introduce the delay property into our asynchro-

nous model.

0 11)efinition 2.4. Let x ,x , “ c ~. , G = < E , P> be an asynchron ous

grammar and 0 ~ 0 be an integer . The sequence x0,x
1
,x
2
,... is a

1)—computation provided :

• •j j+ 1
(i)  Vj - 0, x I— x and

(ii) / i ,j such that x~ = ~~~~ and coordina te i is ac tive in

for all k = O ,l,2 , •’ ,D+l.

h ence a 1)—computation is a legal sequence of state transformations such

i -h at  no ac t ive  coo rd ina te  remains unchanged f o r  0 + 1 consecutive steps.

Exa mple 2 . 3 .  Let  C1 = - {l , 2 } , ( 12 21}> then

111222 I— 112122
i— 121212
i-— 2 12121
i— 221211
—- 222111

is a 0—computation for C1, while

111222 i— 112122
I— 121122
I— 211212
F— 212112
1— 221121
F— 221211
F— 222111
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is one of the 1—computations for C
1 

on 111222.

Note that two active but idle transitions have been underscored .

Evidently ,  C1 moves all 2 ’ s to the left and all l’s to the

right in both the 0—computation and this particular 1—computation . )s

this always the case for all D and all 0—computation s and how 1on~- does

it take? We claim

(i) for any inpu t of l’s and 2’ s, C1 shif ts

all 2’s to the left and all l’s to the

ri ght while preserv ing the total number of each

fo r  any 0—computation ,

(ii) for all 0, property (i) holds as well for all

• D—computations, and

(ii i)  any 0—c omputation for  C1 hal ts  in time less

than 5 (D+l)n for some constant ~ 2 1.

T h e  ~1aim is quite intuitive but it is not simple to prove directly. For

ex amp le , it is not the case even for a 0—computation , tha t once a 2 beg ins

moving lef t , it continues to do so at a rate of at least l/(D+l). Ihis

is because a 2 can “run ii.to” a long sequence of 2 ’ s and be b locked

(since the rule doesn ’t apply) for a long period of time . In short , it is

q ui t e  possible fo r  a 2 to exhibi t  a “h u r r y — u p  and wait” behavior.

Assertions (i) — (iii) are in fact true , bu t to pr ove them we employ

some of the theory developed in the later sections. Our purpose in proving

3 . the assertions now is to underscore the proof strategy which we shall employ.

• Wo believe that it is an e f fec t ive  method of reducing the complexity ~f

this type of proof and is , therefore , wo r th y of special emphasis.
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The argument takes the following form :

(1) verif y directly that the grammar computes the proper result

for some convenien t D—computat ion ,

• (2) find the time t required for the 0—computation ,

• (3) show that  the grammar (or one equ ivalent to it ) is e1emen ta~ y,
T

(4) appeal to the CR theorem (Section 4) which says that all

D— computations for elementary grammars compute the same resilt

and the  time is less than (D+l)t.

Th is strategy renders the proof of (i) — (iii) quite painless as we s tall

now see .

For correct ness , i t  wi l l  be necessary to es tabl i sh  t h a t  the ou tp it is

correct only for a single D—computation . Naturally ,  we choose 0 to sim-

pl i f y the proof and this is often the 0—computation or an ~—compu tation ,

i.e. one where a specific sequence is chosen without regard for how long

an active position is delayed. For the problem at hand , a specif ic

1— computation is most convenient. In particular , for any string x° of

l ’ s and 2 ’ s , we choose the 1—computation with the property:

x° i— x’ provided 12 —÷ 21 is applied to all pairs

x° x° = 12 such tha t j is even .
~l ~j+ 1

~~~ x~
A1 

prov ided all active coordinates in x
1 ac tually chan1;e

(i ’O )

T h i s  is  c lear ly  a 1—computa t ion , since any x~ X
~~f1 

= 12 whe re j  i~

odd w i l l  be delayed one step; the computation is then synchronous the eafter.

See Def in i t ion 2 .8

~~~

__ ___ __ _  - - • • • - • •-• • . •~~~~~~~~~~ -• • —-.~~~~~~~~ -—•• . • • . .
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Th is particular computation has been chosen because it has the follow-

ing easily ve r i f i ed  pr opert y :

(*) for i 0 , if i is odd (even) then x 1 x~~ 1 = 12 changes to

i+l i+l •x . x 41 = 21 i f f  j  i~~ odd (even).

• 

• 
Titus , dur ing the synchronous portion of this computation the only act ive

changes are to pairs with odd/even indices for odd computation steps and

to pairs with even/odd indices for even computation steps . This property

is importan t because it enables Floyd’s theorem (5] on parallel sorting

networks to be envoked : We interpret the synchronous portion of this compu-

tation as a parallel sort (into descending order) using interchanges . The

interchanges of the sorting network are applied so that (*) holds . Floyd ’s

theo rem establishes that a vector of n elements sorted in parallel accord—

ing to (* ) halts with output in (descending) sorted order (all 2’s to

t h e  l e f t )  in n steps or fewer.  Since one step is required to “ge t in to

phase ,” this 1—computation halts with the proper result in n+l steps.

Thus , steps (1) and (2) are established. We find that (1) is t rue and

:~~ that the 0—computation for it is time bounded by n+l. There is nothing

to do for (4 ) ,  so all that remains is to establish (3).

Elementary grammars (see Definition 2.8) have three properties : single

change , persistence and determinacy .

D e f i n i t i o n  2 . 5 : .  An asynchronou s gr ammar C = <E , P> is single change

i f f  pc P implies p is of the form

—
~~ aa ’$

• *where  a , 3~-E  and a , a ’€ E .
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• The single change proper ty  is fu ndamental since it enables a devi~ e

to change independently of its neighbors. This is obviously not a pro~erty

of C1, but it can be modified to be single change.

• 
- Example 2.5. Let C2 = <E , P> wher e

E = (1, 2 ,A ,B } an d

P= { l 2 —~~1A
• 1A —* BA

B A — ~ 31
Bl—~~21
B2 —

~ 22 } .

The in tui t ion here is tha t the in termedia te states , A and B , implemen:

an “in format ion passing ” protocol where A means “a 2 is bein g sen t

left and acknowled gement of receipt is requested” and B means “the 3

has been received and is hereby ackncwledged .” Thus , the first four

produc t ion s accomp lish the 12 to 21 interchange . Production five

Is requ ired because a 1 (placed by BA —
~~ Bl) could have already been

changed into a 2 due to the asynchronous execution .

• 
• Grammar G

2 compu tes the same result as C1, but it is not

t r ue  tha t  i t s  t ime satisfies that required in (iii) above. Indeed ,
-V

t i i &  worst case behavior of C
2 is 6((D+l)n)

2
. The difficulty can

/
he observed in the following example .

Example 2.6. Given C2, a portion of a legal 1—computation for G
2 

is

111111222222 I— lllll1A22222
I’— lll 1lBA22222
h— lll llB122222
t— 11111B1A2222
p-- 11111BBA2222

F— llllU22222l

I
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The underscored t ransi t ion did no t “fire” and is now “locked out.” n the

worst case, it can remain so un t i l  a sin gle 1 propagates all the way to

the  r ight and the B ’s change back into 2’s. It will then change accordin g

to the last production . Apparently, the computational requirements are

sa t i s f ied  for  C2, but not the timing requirements. The solution , of course ,

is to add a new production .

Example 2 . 7 .  Let G 3 = < { 1 , 2 ,A ,B} , P>

P =  {l2 —* lA
• l A— ~~BA

BA —~ Bi
Bl— ~~2l
B2 —÷ 22
BB —* 2B}

The d i f f i c u l t y  wi th  C2 is that it is not persis tent .

Definition 2.6. An asynchronous grammar C = ~~~, P ’  is persistent if

Vx ,i ,p and p ’; xe— y with x~ ~ y~ 
and

• xl— , y ’ with x~ =

implies 3p”cP such -that y ’ F— ., y” with y
~ 

= y ’~.

Persistence prevents an active transition from being “locked out” by the

activity of its neighbors. Evidently , G
3 is persistent. G

3 also has

h the other property required of an elementary grammar , determinacy .

De f in i t ion 2 . 7 .  An asynchronous grammar C = <E , P> is determinate - •

I f  Vx , 1 , p an d p ’ and coordinate i active in x , if

x F— y with x~ ~ 
y~ and

• x h— ,y ’ with x~ ~
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• l)eterminacy requires that there be a unique next state for  any s tate change .

:~ote that G~ an d G2 are also determinate asynchronous graiwnars.

Definition 2.8. An asynchronous grammar is element!~y 
if it is

single change , determinate , and persistent .

Evidently G3 is elementary , so we can appeal to the CR theorem , thus

e st a b l i s h i n g  ( i )  — (i ii)  for  C
3
. Generally, we will be working wit h

s i n g l e  change grammars such as C
3 

and hence we ’d be finished . Since

is not  sing le change a few addit ional  obse rvations are required.

C l e a r ly , f o r  any D— computa t ion  of C1 on x , each

• 1 1+1
• x

c t n  be replaced by

x 1
~~~~~y l

~~~~~Y 2
~~~~~y 3~~~~~x i+l

where  has A ’s in all positions that change from 2 to 1 as

x~ F— x
1
~~ , y

2 has B ’s to the left of the A’s of y1 and y
3 las

l ’s in A positions y1. This is a legal 4D—computat ion for G
3
.

• l It~ncc ( i )  and (ii) must be true for C
1
. Furthermore , if there is nc•

LS such that all D—computation s of G
1 

are time bounded by 6 (D+l )n ,

no bound could exist for C
3
. By the CR theorem it does exist and

ii, iice (iii) is established for G
1
.

D e f i n i t i o n  2.9. Let C = ~ E , P~ be an asynchronous grammar and

x u 
~~~~. A D—computation x°,x

1
,•~~•, ~

m is said to halt if ,~~x €

such that x~
’ i— x. In this case xm is called the result of the

t

1)—computat ion. 

-—- ••-—-~~--
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3. ~;ynchronization Capabilities

In this section we demonstrate that asynchronous linear arrays cannot

synchronize in any meaningful way . This will be done by showing that a

problem , weaker than the “firing squad synchronization problem” cannot be

solved. As noted previously , it is not surprising that the- “standard

version ” of this problem cannot be solved , but it is not even possible for

i-lie two “soldiers ” at the ends to “fire” at approximately the same time.

Def inition 3.1. An asynchronous grammar G = <~~~, P> solves the

•~~~j ) f i r i~ g~ squad problem provided

(a) {g, c ,q } ~ E , E ~ and

*(b) i. a —. 3 P implies a ~ {q,c}

ii. for any D-computation x°, ~~~~~~~~ that halts

0 n(where x = gq c) ,  It
g 

— t
0 H � f (n)

where

t
g 

= min{k~4 
€~~~}

t = m i n ( k f x k
~ 2

iii. All D—computation s can be extended to halting D—computations.

Informally, the conditions can be viewed as follows : g = “general ,”

q = “null state soldier ,” c = “colonel ,” and ~.t = the set of “shoot ”

states; g and c mark the ends of the array . Condition (bi) requires that

the process be initiated by the “general ,” (bii) requires that the firing

times of the “general” and “colonel” be within f(n) of each other. Note

that the definition of t
g 

and t c requires that only the first “bullet”

f i r ed  b y the general , and the f i r s t  “bullet ” fired by the colonel are of

~~

_ _ _ _ _  
_ _ _ _ _ _ _ _ _ _  

h
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interest .  Thus , th e classic solution solves the ‘-0 ,0> firing squad

problem , i .e.  t he prob 1 em is solved synchronously with the general and

colonel (an d all o t h e r  s ldiers) f i r ing at the same time .

Theorem 3.1. Suppose that the asynchronous grammar C = ~-E , P-

solves the <f ,D> firing squad problem with 0 -, 0. Then there exists

a constant 6 > 0 such that f ( n )  � 6n.

P roof. Let C be given as required by Definition 3.1, and

be a halting 0—computation where x0 (gq *c },  x°I = n+2 and

k
• t = n i in {k lx  €

g 1

k J
t = min {k~ x

• c n+2

Fo r each p € P , wr i t ing  p as •~a-~ —h ct ’by wi th a ~ b indicates the

ri ghtmost changed symbol in p. Then let W
R 

= m a x {j a ’ l  p€P}.
P

• Sit~i lar1y writing p as aa- —p ab’1- ’ with a ~ b ind ica tes the

le t tmost change in p. Let w
1 

= max{ I-~ ‘ I p € F ~
- P

F i n a l l y ,  we de f ine  w as w = max {w
L ,w R L

I h i t  is , w is the maximum dis tance over wh ich a single produ c tion

app lica tion can cause a change . Therefore , as wi th  the classical f i r ing

squad problem , no signal can travel from g to c in less than n/w

steps ; thus t~ ~
- n/w. Now , suppose that f(n) � n/2w since if it were

t not , the theorem is true . But , t � n/2w since otherwise ) t  —t •- ri/2w.
g C

Th ere fo re , both t and t are at least n/ 2w .g c

Suppose t
g 

� t
c 
(the other case is analgous). Without loss of

generali ty ,  let n/4w be an integer. Define k t
g 

— n/4w. Now , there

ex i s t s  a 1—computation

• 0 1  k k+l k+sx ,x ~~~~~ , y 

~~~~~~

• -
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with  the p roper ty that Yj•~ )’2~ ‘~
‘n/2 f i r e at each step (i f possible)

and 
~n/2+l ”

~ n+2 f ir e (if possible) at every second step .

Then the following are true :

• 
. k+l k+l . n

(i)  x~ = y .  = 1, 2 , ’” ,-
~~

- — w and , in general

k-fl k+i n
(ii) x . y .  = 1 , 2 ,’” ,-

~~
- — iw.

Note that here ~~~~ refer to the 0—computation and ~~~~ refer to the

1—computation . For i 1, by definition of the 1—computat ion all

k+l k-fltransitions on y 1 
.y take p lace exactly as for the 0—computation .

Thus (I) follows . For i > 1 a simple induction proves (ii).

• 
~Then i n/4w , then = y •~~ on machines j = ~~~~~ 

. ,n/ 4. Hence

t = t ’ where
g

9-t = min{9jy
1

and the “general” f i res at the same step in this part icular 1—computation

as in the 0—computation . Now , analyzing when the “colonel” fires , we

claim that for i = l , 2 ,~ .. ,n/4w
( i i i )  ~~~~ = y 2~ -f2~ for  j = n/ 2  + 1 + ~~~~~ ,n+2.

~ t course , by construct ion , y~~~ 2i 
= y~~~~

2
~~~
’ for j = n/2 + l,~~”, n + 2.

Clearl y, ( i i i )  ho lds also by induction. Now , when i = n/4w — 1, then

t
g

_ l  2t
g

_ 2 
for j  = n/2  + l

~

+
_
~

/ 4 - w, ’”,n + 2.

In particular , for large enough n , x~~2 . Define

• t ’ m in { I y~~~2 ~

t —1 2t —2
Since t~ t~~ x~~~ I . Therefore  y0~ 2 I - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J
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Consequently, t ’ 2t — 2. Thus
c g

t ’ — t I  ‘t  — 2 , so
C g g

— t ’ t — 2 .
C g g

It  f o l l o w s  tha t

1 (n )  • n/2w - 1. j

~e note that although our theorem states only that f(n) � 6n we have

a c t u a l l y  proven a somewhat stronger result , namely that  f ( n ) � n/2w — 1.

fhe sha rp ness of this resul t is par t icularly noticeable for the case of

an ordinary array of machines with 1a~ = 3 mentioned earlier. In thi s

case w = 1 so our result becomes f(n) � n/2  — 1. However , such a -
~~

s i n g le change grammar can readily be devised to “ f ind  the middle ” of an

irrav. Briefly , this can be accomplished by first getting the array

i n t o  a cond i t ion  of “alternat ing l’s and 2 ’ s” in machines , then

app ly ing grammar G
3 

of Example 2.7 to move all 2’s to the left and l’s

to the r igh t .  Finally , the 21 boundary indicates the “middle .” Now ,

firing from the middle outward gives a firing for which f(n) ~ nD/2 .

T h e  worst  case being that  one half f i res  at the fastest possible rate and

t h e  o the r  half  f i r e s  at the slowest possible ra te .  Thus , for  D = 1 we

get  the very tig ht lower and upper bounds of n/2 — 1 ~ f ( n )  � n/2 .

• A l t h o u g h  it seems clear that D should enter the lower bound in a

multi p licative way, so as to give fairly tight lower and upper bounds

for any D, it is not immediately apparent how D could be appropriately

in troduced into the proof.

Theore m 3.1 can be viewed as being sharp in st i l l  another sense.

Given  any D and any ‘
- > 0 there is an asynchronous grammar that solves

-

~ 

1_ 
_ _ _ _ _ _  _ _ _ _ _ _ _ _
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the -:f ,D~ firing squad problem with f(n) = En . The solution is just to

have the general send a signal down to the colonel. This signal causes each

machine to f i re as it receives i t .  Since one can clearly send a signal from

the general to the colonel in € n time by using productions of th e form

• sq
k 5

k+l 
(s = shoot state , q = quiescent s ta te)  for k large , it

follows that one can solve the <f ,D> firing squad problem with f (n ) E n .

HI  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. The CR Theorem

The objective of this section is to prove the CR theorem which

states that all D—computations for a given input and elementary grammar

yield the same result and the time required is less than or equal to

(D+l) times the 0—computation time for that input . Several preliminaries

are required prior to the statement and proof of the theorem .

This entire section implicitly refers to an elementary grammar

• ;
Definition 4.1. Let x r and 1 � k < n. Define

a substitution function as

= yab~~z jf  ~~ a3 —+ ctb 6 € P such tha t
• x yia~z and yaa~ = k ,

undefined otherwise .

• Since C is elemen tar y ,  i t is de termina te and hence f
k
(c) is well

• defined. We next establish that for a single transition , the order

of application of the productions is immaterial . Notat ionally, if

• I f , g, h are subs titution func tion s for x, let fgh(x) denote the repeated

f unc tion applica tion

• f(g(h(x))).

A A simple consequence of the definition of I— and the substitut~on

functions is given in the first lemma.

Lemma 4.1. xl— y if y 
~d 

1d (x) where (x) is
1 1 q i

def ined , 1 � i -
~ q.

I

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ — - -• • • — - - - -  . • - • • -~~~~~~ 
—-- —- -. 
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Lemma 4.2. Let x c and 
~d (x) , 1 � i � q be a set of

1
substitution functions defined for x. Then for any permutation it on

~d 
(x) = 

~ d 
“ ‘e

d 
(x) = y E ~n

1 q 
1 q 

- •

Proof. If f (x) and f (x) are defined , then r s imp 1ie~

~~~~~~~ 
= z c

since G is determinate and persistent . A straigh tforward  induction on

the number of interchanges required to reorder to 1” ~q comp letes

t h e  p r o o f .  J

Suppose 
~d1

’ 1 � i ~ r is the set of all substitution functions

• de f ined f o r  x , then we define x t~
—

~ y as y = 
~ d ~ d 

( x ) .  We a l so
1 r

note that x l—~ c ’ if x ’ = 

~d 
(x) for some k, 1 ~ k S r .

k

The next lemma , illustrated in Figure 4.la , will be an in tegral part c f the

• i n d u c t i o n  of the subsequent lemma .

• Lemma 4 . 3 .  If x € ~~~~
, x y ,  x 1

par 
x ’ , y 

~~~r 
y ’ imp ly x ’

P r o o f .  Let 
~d 

(x) be all defined substitution functions for x , • -

i
1 1 - - r. From the definition of F— , and Lemma 4.2

par

x ’ = f  ...f (x) (1)d
1 d

r
• and

~~= f d~ (x) 
-

with renaming if necessary. Let f (y) 1 -
~ i - q be a l l  def ined  f u n c t i o n s

• c
1

for y. Then

y ’ = f . f  f (x) .
• c c d
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Figure 4.1 Graphic representation of selected lemmas and theorems .
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By pers istence 
~d ~d 

(x) is defined for all i, 1 S i S r — 1,
i r

and so {f , •.~~,f ~ {f , ... , f . By Lemma 4.1 then we cand d c
1 r—l 1 q

reorder and substitute to get

= 

~e ~~e ~d ~d 
(x) (2)

1 s i  r

b r  some f wheree
1

[f  , 
. . . 

, f } = ( f  , . . . , f } — {f , 
. . . , f } .

e e c c d d• 1 S 1 q 1 r—l

• C o m b i n i n g  (1) and (2)  and us in c~ the definition of f—j- , it follows that

x ’ ‘—? ~~~
‘ .

l e m ma 4 .3 is generalized in Lemma 4.4. The lemma and proof are illustrated

by Fi gu re  4 . l b .

Lemma 4 . 4 .  t f  x E E , x H 1 Y , X f -  x ’, yr— v ’ then x ’ t— y ’ .

Proof. We use induction on the number of app lications of 
~
—

~
- in

going from x to v. if x = v the result is trivial and when the length

is 1 , the result follows from Lemma 4.3. Let

k 2. ~: 

r 
~~l 

w
k 

i
~~ 

~
k+l 

= y

w
1
F—-- w 1 

O~~~ i s k + L
par

- I h~ y I enc~~i 4 . 3 ,

- -  i * _ j + l
w I-—~- w  O~~~ i~~~ k

i hiu s ,

— 1  *— k+i
w f -Tw

— l  , — k +~ *and since x — w and y w it follows that x ’ —i- y ’. 0
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Figure 4 .lc illustrates the next lemma .

Lemma 4.5.  If x c Y’~, x I— y and x l—  y ’ then y t—~ y
’.

Proof. Let f (x) be all defined substitution functions fordi
x, l � i < r .

Then

y f~ ~d 
(x)

j
for some j s r by Lemma 4.1 and (possibly) renaming.

But

(x) = 

~d ~~d 
(y)

1 r 1 j—l

and hence y t—
~? 

y ’.

We can now state the main result of this section .

CR Theorem. Let G = <~~~ , P-’ be an elementary asynchronous gram-nar

and x c ~~~~
. Let x u°,u

1
,u
2
,.~~

. ,u~ be a halting 0—computation of C on

x and x v°,v
1
,v
2
,~~” ,~

m be any halting D—computation of C on c. Then

(1) v~~h—1 u1 and

(2) u~ F—i 
i(D+l)

Note: If m 9-(~ fl) we suppose the D—computation has been extended such

that m < p < 9 (D+l) implies v1
~ = ~

m
. This theorem and its proof ar- s

illustrated in Figure 4.ld — 4 .lf .

Proof.

(1) We prove this by induction on i. For i 0, it is trivially

I * Itrue . By hypothesis v F—1- u for i � k. By definition of

0-computation u~ F— ~~~~ 0 � j < 9 - .  Define ~
k i__ wpar par
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* k+l
for some w. By Lemma 4.4, w 

~
—j- u . But , by Lemma 4.5

k+l * k+l * k+lv I—f- w. Therefore v 
~~~~~ 

u •

(2) This is also proved by induction on i. For i = 0 , the result
j  * i(D÷l)

is trivial . By induct ion hypothesis , u 1 - - v , fo r i <

— 

and by definition of 0—computation u3 
~~~ ~~~~ for  0 j  < 9 - .

Claim. ~w such that ~
k (D+l) 

~~ 
w ~~ v~~~~~~

+
~~

l
. (We prove Lhe claim

In a moment.) By Lemma 44 ~
k+1 

~~ w and there fore  u
k+l 

~~ ~
k(
~~

l)+
~~

l
.

To see that the claim is true , let f
d

(vk~~~~
)
) be all defined functions ,

then
k(D+ l)• w = f

d
...f

d
(v )

1 q

by defini tion of For 1 -
~ 

j D + 1 define ~~~~~~~~~~~ to be all

1 q .
defined substitution functions such that

• ~
k(
~~

l)+j 
= ~ . . . f  

- (V
k 1 )

~~~~
l) .

c~ c~ L
q
~

-
f

But by persistence , the definition of D—computation and a reordering

argument similar to that of Lemma 4.2, 
~~e ‘

“ ‘re such that
r

= 1e ~~e ~d ~d (v k ) )
1 r l  q

and the claim follows. U

The impo r t of the CR Theorem can be seen in the following corollaries .

• 
Corollary 4.1. Let C = <~~~, P be an elementary asynchronous grammar

and x ~~~. I f  y c is the result of any hal ting D—computat ion of C 

-~~~~~~~~~~~ -.~~ - • -~~~• •~~ •-- • --- •• • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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on x, then y is the result of all halting D—computations of G on x.

Corollary 4.2. Let C = <E , P> be an elementary asynchronous gra-ninar

• and x € E
n 

If a 0—compu tation of C on x ha lt s  in 2~ steps , then any

D—computat ion of C on x halts in less than or equal to £ (D+l) ste s.

It is important to note that the requirements of determinacy and

persistence are necessary in the sense that the CR Theorem is false if they

are eliminated . This is clear for  determinacy . Grammar C2 from Sect ion 2 ,

whi ch is not persistent and wh ich execut ed in appr oxima tely n2 ra ther

than  n steps , demonstrates this for persistence . We shall have occa~ ion

to use these two corollaries in the next section on recognition capabilit ies.

The connection between asynchronous computat ion and the Church—Rosser

property has been observed before by several researchers [6, 8 1. The

contribution here is that in the presence of bounded delay (D < ~°) not only

do asynchronous computations “behave the same” but they operate in “about

the same time .” In particular Corollary 4.2 is new , while Corollary 4.1 for

I) = = can be proved fairly directly from results in [6] and [81.

A
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r~~
• Recognition Properties of Linear Asynchronous Grammars.

The goal of this section is to argue that the sets recognizable

by cellular 1—dimensional arrays [101 in time t can also be recognized

by linear asynchronous grammars in time 3(D+l)t for all delays D � 0.

Since cellular arrays can solve a wide class of recognition problems

in a synchronous and efficient manner , we can conclude that these problems

can also be performed asynchronously without serious time degradatioa .

The overall  stra tegy begins by noting tha t any single change , determi-

nate asynchronous grammar (of which cellular arrays are a special case) can

i c  pu t  in to  a nori.~al fo rm with certain properties. The next step is to

show how to construct a persistent grammar from the normal form grammar ,

such that both grammars produce the same output in the synchronous case

(0—computations). Final ly ,  we appeal to the CR Theorem to establish that

for any single change , determinate asynchronous grammar , there exists an

elementary grammar accepting the same set in time 3(D+l)t , whe r e t is the

recognition time for a 0—computation of the original grammar . The desired

result then follows as a corollary since cellular 1—d imensional arrays

correspond to single change , determinate asynchronous grammars.

To simplif y the exposition , we omit two details. First , we omit the

construction of the normal form and , secondly , we ignor the details involv—

lug the end—points of the array . For convenience , the reader can suppose

that the configuration s are bounded by end markers and appropriate produc—

tions exist for handling the markers. The general case is unaffected by

• this assumption .

• 
~- Let G = < E , P~ be any single change , determinate asynchronous

grammar. (Note that cellular 1—dimensional arrays satisf y this requirement.)

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Definition 5.1. A single change, determinate asynchronous grammar

G
N 

= <

~~~~ ~N 
is a normal form for C, if there exists a k such that

(1) Va B e “N’ nJ = k

and 

(ii) al
.
~~

ak b
l~

••b
k 

€ implies al~~~
a
Lk,2J 

= b
1~ 
~
•b

Lk,2J t

aL(k+l),2J+l~~~
ak = b

L(k+l)/2J+l
_b

k

(iii) a - B € <~~~~ ~p € P such that a P— B . 
t

Informally , requirement (i) states that all productions are of

the same size , while (ii) guarantees that the modification is to the

“middle” term in the production . This latter requirement implies, of

course , that k is an odd integer. Property (iii)  requires the same

behavior from the two production sets ott k length strings . It can

be seen that cellular 1—dimensional arrays are represented by normal

form grammars with k = 3. Let G
N 

be a normal form for G and let

m = (k+l)/2 in the sequel.

Lemma 5.1. For any C, there exists a G
N
.

Proof. This can be done by suitably paddin g out productions of

~• the original grammar. The construction is omitted. iii]

Lemma 5.2. If G is single change and determinate , then C
N 

is

single change and de terminate.

P roof. The single change property fol lows direct ly  f rom Def in i t ion

5.1 (ii) and the determinacy property follows from Definition 5.]. (iii). 0

Lemma 5.3. Let x°, • .~~
h be a 0—computat ion for G and x° = y

O ,... ,y
h

he a 0-computation for G
N on x . Then x9- = y 9- 0 s 9. s h .

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~• • •  ~~• •
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Proof. By induction on 9.. For 9. = 0 the result is immediate.

Suppose it is true for all i 5 9 - .  If x~ ~~~~ no p e P applies at

• j in x 9-. If € 

~N 
applies at j in y9- , requirement (iii) is

- 9-+l 1+1 9- 9--fl
contradicted , so X

j  
= . If ~ , some p € P applies at j

in x 9- . Let a x
~~m+i~~

*x
~÷ml

. Then a l-~ B and by (iii), a —
~~ B €

9- 1+1 f+l
• implying j  active in y . Thus x~ = y. . 0

Having found a normal form for C, we now seek to construct a

new grammar G’ which is persistent . We first require a definition .

Definition 5.2. Let C
N 

= cE , 
~N 

be a single change , determinate

asynchronous grammar in normal form. The completion of G
M 

is a system

C = - E , P > such that P P ,.  u (a —* nJ ~ B, a— ÷ 6 €  P } .
c c ~ N

Informally, the completion of GN has the production set as with all

“idling” productions added. Thus , the completion is not an asynchronous

grammar. This is no prob lem since the completion will be transformed

into a legal asynchroncus grammar below .

A few comments are in order about the for thcomin g construction . The

goal is to achieve persistence . The technique by which this is accomplished

i s  to define a protocol that enables each device to acquire inputs from

its neighbors. The protocol is basically three fold: (1) a device announces

its Intention to change state. At this point , every neighbor that depends

upo n the device ’s current value fo r  their  next s ta te  change must now

retrieve the input. This is done by having the neighbors announce their

intent to change state. When all the  neighbors have announced , ( 2) a

device is allowe d to perform its transition. After the device and Its

nei ghbo r s have changed st at e , (3) they acknowledge that fact by becoming

J ~4

~~ &,llI g
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quiescent. A new cycle is then ready to begin . The purpose , there~ore,

for completing the grammar is to enable transitions that wouldn ’t otherwise

fire to receive input , even though no new state change will result.

Defini t ion 5.3.  Given C
~ 

= <E , the completion of an asynchronous

grammar , d e f in e the alphabet sets

= { [
~ ]~ al

. a
laa

~~ l ak a1 a 1ba~~ 1”’~~~€ P }

= { [
~ 1 I a

1 
a

1
aa +1 ak ~~~~~~~~~~~~~~~~~~~~~

= {bI [~
] € E } .

Informally, each element of is a state a device enters when it announces

its intent to change from state a to state b. Each element of E is

a transition state it enters before becoming quiescent . Each element of

is a quiescent state. We next define the productions for the ne~

grammar from the completion .

Definition 5.4 .  Civen the completion C = < E , P > of a normalc c
form grammar define the production sets

p =

a
Cc 1” ~c 1

a c ~~1 c
k 

C
1

• ~c [ ] c .• •c
k

Ia a — ‘a~~ •~ b~~ ••a € P  and1 m k 1 m k c

C
j  

E~~~U{ a }  1 1 k and I ~ m}~
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)

P =

t a
{d

l
...d

l
[
b
m ]d +l

...d
k 

—
~~ d

1~~~ .d
l [ bm ]d +l

.~~~dk

a “a a —i- a ‘b • “a c P and
1 m k 1 m k c

P
q 

d 1 € E ’ 
~~~~~ 

1 s i s k and i ~ m}~

~e 1[ }e~~1” 
.e
k 

—
~~ e1~ m_ 1bm em÷l~~~~~k ii

a a —~~a ” b ” a  c P  and
1 in It 1 m k c

e~ € E UE (a )*‘ ~~ < ]~ r k, i ~ m } .
1

The P produc t ions accomp lish the announcing task. Note that the neighbors

may or may not have announced when a given position does so. The

productions perform the transition and they require that the neighbors

have either performed the transition or announced . The Pq productions

return to quiescent state where the neighbors have either done so as

well or at worst , they have performed their transition .

Let ~- ‘ = E
d 

ii ~ in the sequel.a€E a

Lemma 5.4. C’ = <E UE ’, Pa U ~t 
UPq

> is a single change

asynchronous grammar .

In the sequel we will use G ’ for this grammar.

P roof. Immediat e , by const ruc t ion . fl

Lemma 5.5. C’ is determinate.

P roof. Determinacy is vacuously satisfied since no two productions

have the same left hand side and all productions change only the r iddle

symbol. 0

~~~~~~~ 
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PRODUCTION p’ APPLIES AT I IN X

Figure 5.1. Production application with overlap .
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Lemma 5.~~. C’ is persistent.

Proof. Let x ~ fo r  some 
~ 

€ P~ UP~ U P
q 

such that 
~

and x~-----, y ’ for some r ’ € 

~a 
UP~ UPq 

such that x~ = y
~
. Assu~ie, in

contradiction to the persistence requirement , that Vp ” 
~a 

UP~ U P such

t h a t  y ’ I—,, y” implies y~ ~ y. . Let p = u
1~ 

u~~ ~~
U

k 
~~~~~ u

1 
•u ’’ u. and

p ’ = v
1
” v ”  V

k 
v
1 ~v ’ .v

k
. Thus xi— y implies

• ‘~i-~rn+l X U
l” 

.u
k

and xl— , y ’ implies

x~~~~1
. = v

1~ 
v~ fo r  some 9- w i t h  i — m + 1 s � I + r — 1

since otherwise p would still he active at i in x. (See Figure 5 . 1 )  • 

-

loreover , since x~ = y ’ , i ~ ~~. D e f i n e  j i—Z , then

(*) x . = u  = v  . and
1 UI m+j

(**) x = v  = u  .
9. m rn-j

Case 1. (p € P
a
)
~ 

By construction , p € 

~a 
implies urn 

€ E .  But (*)

imp l ies 
~~~~ 

e Y~ so 
~~~~~~ 

P~~ . If 
~~

‘ ~ P
q~ then the  cons t ruc t ion  imp lies

v E f o r  some a , but (**) imp lies U
r nj  

c E c o n t r a d i c t i n g  p 
~

f h cr e f o r e  p ’ r P , and v ’ € 1a fo r  some a.  But b y c o n s t r u c t i o n , aa m
-• production w w —~~ w “w ’ .w exists  such tha t  1 s z ~ k ,1 rn k 1 in k

az ~ rn — i , u = w , and w = V ’ . Moreover , w ’ = u ’. Thus , the
z z rn—j m in m

assumption is false if p €

• Case 2. (p € P ) .  By cons t ruc t ion  p € P implies u € for

L 

t t in

some a. But (*) implies V
m+i 

~~~a , so 
~~

‘ I P
q~ 

If 
~~~

‘ E 

~a’ 
then the

construction implies V € E , but (**) implies U
~~~~j 

€ L contradicting

— —— ~ -——— —-~~~—--—• •—~~~~~~ - -~~~ -~~~~--- •~~- • -~~~~~~ • -•—~~~ - --~~~ - •-- ~~~~
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• 
~ 

Hence , p ’ € and v ’ € E
a 

for  some a. But b y cons t ruc t ion ,

a production w1 
•w• . .

~~~~~ 
w
1” 

•
~~~

‘ • . .W ~ exists such that 1 ~ z S

z ~ rn—i u = w and w . = v ’ € . Moreover , w ’ = u ’ . Thus the

assumpt ion  is f:lse , if 
~~t

• 

a m in

Case 3. (p € P
q)• 

By construction , p € P implies u e E f or

• some a. But (*) imp lies v~~ € E , so p ’ I 
~a 

If p ’ € P~ , then the

cons t ruc t ion  imp lies v € ~~~~~, fo r  some a , but (**) inrnlies ~ •in - m-j

• contradicting i € P~~. Hence , ri ’ € P q~ An argumen t similar to the al ove

guaran tees  a product ion , so the  assumpt ion is false  if 
~ 

€ P
q
• U

0 1  3h . -Lemma 5 . 7 .  The sequence x ,x ,“ ,x is a 0—computa t ion  seqLence

for G ’ on x° i f f  x° = y
0,y 1,••~ ~h is a 0—computation sequence b r  G

M

0 i 3ion x , and y = x  0 � i � h .

P r o o f .  Clearl y ,  b y cons t ruc t ion

31 nx € E 1 = 0 , l , 2 ,~ .. ,3h

~
3i
~~ € ( U

z
E
a}n i = 0 , l ,~~~~• , 3 (h-l)

i 0,l , .. ,3(h-l)

0 1 3h 0 * 3isince x ,x ,~~~~“ ,x is a 0—computat ion . Suppose x i— x sa is’fies the

lemma fo r  i = 0,l ,~ ” ,Q . To prove the if part , let p
1 

€ “a app ly at j

39- 39. 31+1 32+1 ain x , then x F— x and x = I ] fo r  some a ,b € E .  Each  ofp1 j b

the m—l neighbors ott either side is in a skate chosen from U Ea as well.• a€1

• 
- Hence there is p2 I~ P such that I— x3~~

2 
and ~~

39-+2 
1
b

1p2 —

Now , the m—l neighbors on either side are in a state chosen from

a~~;Ea Hence some € P~ applies and x 3
~~

2 
~ ~

3(
~
4-1) 

such ~nat
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= b. But , by construction , these three transitions imply there

exis t  p € 

~c 
such tI~at x

3
~ 

~~ 3(2+1) 
with 

2+1) 
= b. If a ~ b

• 3(c-l-~ ) 9.
then p € and so x . = y~ . If a = b , no production in

• 1 9-+ l - st
P~ applies (p was added by completion) and y. = y. at the (~+l)

step of the 0—computation of G
M 

on x°.

To prove t h e only if part , suppose in the 0—computation of G
M 

on x°,

~ 
~~ 

~~~~~ I f  p is active at j in y
~
, p € 

~c 
If v~ = y1~~~, a

comp letion production has be€~n added . In either case , accord ing to the

c o n s t r u c t i o n  a p roduc t ion  p € P exists such t ha t  x3’ I~~ x
3
~~

1 
~- ith1 a p 1

39+1 a ~ 2+1 -• x . = 1 b ’ and y . = a and y. = b .  It is easily observed that

• - 3~+l 3~ +2 3( +1)
other productions exist such that x F— x F— x and

• 

• 

~~~~~~~~~~ = b =

Theorem 5.1. Given a single change , determinate asynchronous grammar

C - 1 , P -  t h e r e  ex i s t s  an elementary grammar G ’ = < E ’ , P ’ ’ such that

Vn and VD > 0, if x
0 

€~~~~~
° and x° ”x

1 
is halting 0—computation

of C on x°, then ~h such that
h 

2

(i) x 0 , . 
,~~ 

2 
is a halting D—computation for C ’ on x° with

• 1i , h
1x = x , and

(ii) 11
2 

3(D+ 1)h .

P r o o f .  Form 1 • ,  th e norma l form for G. Complete the normal

fo rm and Constr ict C ’ . The 0—computat ion for these grammars y i e l d

the same output with C ’ operating at most 3 t imes slower than G. By

the CR theorem of the previous section , C ’ satisfies (i) and (ii)

since it is elemer-itarv , by Lemmas 5.4, 5.5 , and 5.6. U

A 
_• — - --- — - s_a —— -- ~~~—- —- -~ 
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Corollary 5.1. A set recognized by a cellular 1—d imensional array

in time t is recognized by some elementary grammar , asynchronously, in

time less than or equal to 3(D+l)t , for all D � 0.

Proof. Let 6: ~ x ~ x E —
~~ ~ be the transition function for

the cellular 1—dimensional array [10]. Then define C = <E , P> where

a1
a2a3 

—
~~ a1b2a3 

€ P i f f  ó(a1,a2,a3) b2, wi th  a2 ~ b 7 ,

• Va1,a2,a3,b2 € E 1]
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t i . Conclusions

l.Jhat we have done in this paper is to introduce the notion of bounded

delay asynchronism and to stud y some of its properties in terms of a very

special structure which we called linear asynchronous structures. We have

shown three main results. First , that these structures cannot be synchro—

riiz ed well; the “gap between firings” is a function of the number of elements

in the structure. Second , that under suitable hypotheses (elementary grant—

mars) the systems compute unique values , and are not much “slower” than

• synchronous structures , and finally that these systems are computationally

as powerful as synchronous systems.

Several natural questions arise. The first is: Wha t happens for

more complicated structures? Natural extensions would be to higher dimen-

sional uniform structures and to tree and graph structures in which each

node - had the same in and out degree. It would seem that similar results

could be obtained.

The second question arises from our CR Theorem in Section 4. We have

-~1re ady shown in Section 4 how there is an intimate connection between Church—

Los- ~er systems and linear asynchronous structures. But our CR Theorem says

something more than the usual Church—Rosser type result by introduc ing timing,

or number of steps , compari sons between the “shortest” and “longest” paths to

the unique result. The question , then , is how or when can such timing results

he obtained for other types of Church—Rosser theorems? Clearly, they do not

hold in general since some Church—Rosser systems can have “unbounded delay .”

\ ] s - , , one could have bounded delay but some sort of looping behavior that

c o u l d  give rise to no tight bound existing for timing. Nevertheless, it would

• 
he Interesting to characterize , for general Church—Rosser systems, when

various types of bounds on timing hold.

• ~-
--~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ -• —-~~ •—~~~~~~~~-- - •--.~~~ -- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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